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Abstract—This paper presents an architecture to fuse the in-
formation from different spatially distributed unattended ground
sensors (UGSs) consisting of multiple modalities to track a group
of people walking along trails in open areas. The UGS system
we used consists of ultrasonic, seismic and passive infrared (PIR)
sensors. Estimating the size of the group is done by counting
the number of targets using ultrasonic sensors. Determining
the composition of the group is done using several classifiers.
The fusion is done at the UGS level to fuse information from
all the modalities to determine the presence of a target(s) and
the information from multiple UGS systems are fused to track
a group. The algorithms are tested on data collected in the
wilderness with three UGS systems separated 75 m apart on
a trail.

Keywords: Personnel detection, decentralized fusion,
tracking, non-negative matrix factorization, classification,
basis vectors.

I. INTRODUCTION

There are number of reasons to find and track a group of
people in the wilderness. One is to know their whereabouts
and trace out the path they traveled in the event of their
disappearance. Another reason is to protect long borders
between two countries. Border patrol personnel are tasked with
tracking down and intercepting people crossing the border
illegally. They would rather intercept a larger group than a
smaller one. In order to track a group of people, a number
of unattended ground sensors (UGSs) are deployed along
the known trails frequented by people crossing the border
illegally. The current UGS systems available commercially
[1] employ acoustic, seismic, PIR and magnetic sensors. The
sensor algorithms detect people and notify the authorities of
their detections using wireless communications links. Based
on the sensor reports, the authorities use radar and imaging
sensors to track the trespassers and make a decision as to
intercept them or not depending on the size of the group and
availability of personnel. A majority of the false alarms are
caused by animals roaming in the wild. Based on the sensor
reports from various sensors on different trails, the probability
that a person would take a certain path to cross the border at
a certain location is estimated [2] depending on the previous
usage of various segments of the trails.

The UGS system considered in this paper for the purpose of
tracking people is equipped with seismic, PIR and ultrasonic

sensors. The ultrasonic sensors provide additional tracking
information as well as the added capability to identify the
targets at closer ranges. It is also assumed that the UGS is
equipped with electronics to communicate to its immediate
neighbor.

Whenever a group of targets (targets could be animals or
people or combination of both) pass by the UGS, the sensors
within the UGS analyze the data to determine the type of
target and count the number of targets. Details of the analysis
of each sensor data are presented in the section III. Individual
UGS system may be able to determine the type and the
number of targets in a group; however, in order to track the
group, the information should be available to the other UGSs.
The information should include the type of target, number of
targets, etc. Moreover, in order to track a group, it is necessary
to know the direction the group is traveling and also identify
the group as being the same group that passed by the UGS
down the path. Since, only non-imaging sensors are used, if
two groups consist of the same number of targets, they are said
to be the same group. Justification for such an assumption is
that one does not have a preference for one group over the
other as long as the size of the group is the same.

The organization of the paper is as follows. Section II
presents the fusion architecture used to track a group of
people. Section III presents the data analysis pertaining to
classification and counting of the targets. Section III also
presents the algorithms for fusion of distributed sensor data at
the UGS level and fusion of information from different UGSs.
In section IV, data collection in remote area is presented and
also the results from the fusion algorithms. Conclusions are
presented in section V.

II. FUSION ARCHITECTURE USED FOR TRACKING PEOPLE

As mentioned in the introduction, the majority of people
walking in the wilderness use trails. These trails may or may
not intersect. A web of trails is shown in Figure 1. The
“dots” on the trails show possible deployments for the UGS.
A majority of the times, people travel from the border to a
destination or vice versa.

There are several questions that must be answered in order
to track a group. They are: (a) what is the composition of
the group, that is, how many different types of targets (people
and animals) are in the group, (b) what is the direction of their
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Figure 1. Labyrinth of trails

travel, and (c) is the group the current UGS system is detecting
the same as the group who just passed by the previous UGS
system. The answers to these questions have to be derived
from the sensor data. As mentioned earlier, each UGS system
consists of seismic, PIR, and ultrasonic sensors and their data
are processed to obtain the required information. The analysis
of the sensor data is presented in section III. We make some
assumptions in order to answer the above questions:

• If somebody is riding an animal, the animal and the
rider are considered as one target and categorized as an
animal, since the rider does not contribute to the seismic
signals and contributes very little to PIR and ultrasonic
signatures. This will be clear in section III.

• Each target walks in a single file – this is a reasonable
assumptions as the trails are narrow causing people walk
one after the other. Moreover, a group of people bunched
together is easier to detect by the border patrol than
people who are spread out.

• Information from the neighboring UGS system is avail-
able before the current UGS data are processed.

• Each UGS system would determine the following infor-
mation and pass it to its neighbors:

– Direction of travel
– Number of targets of each type

Since the sensors are distributed spatially over a large area,
and the data from each UGS are available sequentially, the
appropriate architecture for tracking people is the tandem
architecture shown in Figure 2. When a trail branches into
two, both branches are tested to determine the activity on
the branch. The details of the fusion algorithm are presented
in section III-D. In the next section, we present the analysis
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Figure 2. Architecture for tracking people
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Figure 3. PIR sensor Fresnel zones

of each sensor’s data to obtain the relevant information for
tracking.

III. SENSOR DATA ANALYSIS

Although, several sensor modalities, namely, acoustic, seis-
mic, PIR, magnetic, electrostatic, micro-RADAR, etc., are
used to detect people and animals [3], [4], in this paper we
consider PIR, seismic, and ultrasonic sensors. Each one of
these sensors brings a specific attribute to classify the targets
and help in counting their number. Although we consider
horses in this paper, the techniques developed here can be
applied to other animals also. The data analysis is presented
in the following sections.

A. Passive Infrared Sensor Data Analysis

PIR sensors are cheap and readily available and are used by
most of the UGS systems [1] in the field today. PIR sensors
are also used by homeowners and others as motion sensors
to alert them of intruders. PIR sensors register the thermal
radiation emitted by targets and objects in its field of view.
The PIR transducer used here has dual element pyroelectric
sensors connected back to back to cancel out the background
radiation. As a result, the sensor output is proportionate to the
thermal radiation of the target alone. The PIR sensor is also
equipped with a Fresnel lens array in front of it dividing the
field of view in to several zones as shown in Figure 3. Each
zone is split in to positive and negative beams corresponding to
the two elements of the PIR sensor. As the target intercepts the
positive beam, a positive voltage is generated at the output of
the sensor and similarly, a negative voltage is generated if the
target passes through the negative beam. If the target occupies
both the beams, the net output voltage would be zero.



Figure 4. Typical trail
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Figure 5. PIR signal produced by a person walking

A majority of the times the people crossing the border walk
on the trails so as to cover a good distance in a short time.
These trails are in general narrow and go through bushes.
Placing the UGS systems along the trails gives an opportunity
to get various sensor signatures at close range with good
fidelity. One typical trail used for data collection is shown in
Figure 4. The sensors are placed at the edges of the path with
the Fresnel zones of the PIR sensor looking down the path.
This placement allows a target to cut through several Fresnel
zones. Depending on the length/width of the target, several
zones are occupied by the target at a time. For example,
a horse walking on the trail can touch two to three zones
simultaneously. Figures 5 and 6 show the signals captured
when a person and a horse walked on the path, respectively.
From Figure 5, it is seen that as the person walks across
the zones, the polarity of the signal changes from ‘−’ to ‘+’
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Figure 6. PIR signal produced by a horse walking

repeatedly. When a horse walks across the zones, the slope of
the signal changes midstream and the polarity in Figure 6 is
‘− + + − + − −+’ with respect to the average value of the
signal. This is due to the fact that the horse is ≈ 6 ft in length
and crosses several zones simultaneously. Moreover, the time
it takes a person to cross all the beams is less compared
to the time taken by a horse. Based on these observations
an algorithm to discriminate people from animals is developed.

Algorithm 1: Target discrimination algorithm for a PIR
sensor

• Estimate the duration ‘τd’ of the PIR signal activity.
• Determine if τd > Th, where Th is the threshold. Note

that Th is different for each sensor placed on the trail
which depends on the distance between the sensor and the
trail and the angle at which the sensor’s Fresnel beams
intersect the trail. To have the same Th for all sensors,
the sensors should be placed at a predetermined distance
from the trail and at a fixed angle with respect to the
path.

• Determine if the polarity of the signal is ‘−−’ or ‘++’
during the course of travel.

• If the polarity is ‘−−’ or ‘++’ and τ > Th, declare the
target is an animal, otherwise the target is a person.

B. Seismic sensor data analysis

Traditionally, seismic data analysis implies cadence analysis
[5]. In this section, seismic data analysis is done to extract
the basis vectors for each type of target so that they can be
used to classify the targets. Extraction of basis vectors is done
using non-negative matrix factorization (NMF) [6]–[9]. A brief
description of NMF is presented here for the sake of continuity.

Let [X ] be a [t× ω] matrix representing the short-time
Fourier transform (STFT) with Xt,ω denoting an individual
element of [X ] with variables in time t and frequency ω. NMF
was first introduced by Lee and Seung [6], [7] and was adopted
by others to minimize the cost function

1

2

∑
t, ω

∣∣∣∣∣|Xt, ω| −
k∑

i=1

Wt, i Hi, ω

∣∣∣∣∣
2

+ λ
∑
t, i

|Wt, i|1 ; (1)

s.t. H, W ≥ 0,

where [W ]t×k and [H ]k×ω are the weight and basis matrices,
λ controls the sparsity on the weights and |•|1 denotes the L-1
norm. The number of basis vectors “k”, which is also the rank
of factorization, is usually chosen [6] so that (ω + t)k < ω t,
and the product of W and H can be considered the compressed
form of the original data matrix [X ]. The NMF technique [9]
takes a given set of observed vectors (rows of [X ]) and uses
them to find a set of basis vectors (rows of [H ]) such that
any observation can be represented as a linear combination of
these basis vectors. NMF selects the recurrent patterns in the
observations as the basis vectors. Note that the rows of [H ]
are not orthogonal. Figure 7 shows a matrix factorization.
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Figure 7. Factorization of matrix

The additive model in equation 1 implicitly assumes addi-
tivity of the magnitude spectra, which is only true if the phases
are identical [9], [10] as shown below:

|Xt,ω| ejφ0 = |Ct,w| ejφ1 + |Dt,w| ejφ2

|Xt,ω| = |Ct,w|+ |Dt,w| ; iff φ0 = φ1 = φ2.

To overcome this problem, Kameoka, et al. [9] developed a
complex NMF technique by multiplying each spectral basis
element by the ejφ that best fits the signal:

1

2

∑
t, ω

∣∣∣∣∣Xt, ω −
k∑

i=1

Wt, i Hi, ω ejφi,ω,t

∣∣∣∣∣
2

+ λ
∑
t, i

|Wt, i|1 ;
(2)

s.t. H, W ≥ 0,

To overcome the problem of estimating the phase φ, we use
discrete cosine transform (DCT) instead of STFT in this paper.
We use both the positive and negative coefficients of DCT for
basis vectors. When these basis vectors are used to represent a
given signal, the phase is automatically estimated as is evident
from the formulation of the problem given below. Let

Xi = dct (xi(t))

be the DCT of the signal xi(t). In our case, the data are
collected at 10 k samples per second, hence the DCT of xi(t)
would have 10 k coefficients. However, the seismic sensor
used has a frequency response of 0-250 Hz. As a result, only
the first 500 out of 10 k coefficients carry most of the energy
and are sufficient to reconstruct the time domain signal with
negligible distortion.

Let X+
i and X−

i denote the magnitudes of the positive and
negative DCT coefficients such that Xi = X+

i − X−
i . Let

the matrix [Xp] = dct(xi); ∀i is the set of DCT coefficients for
all the training data corresponding to people. Then the matrix
[Xp] can be written as

[Xp] =
[
X+

p

] − [
X−

p

]
,

where
[
X+

p

]
representing the positive and

[
X−

p

]
representing

the negative DCT coefficients of [Xp], respectively. Similarly,
[Xa] = [X+

a ] − [X−
a ], represents the set for animals.

After matrix factorization using NMF, we get[
X+

p

] ≈ Wp Hp;
[
X−

p

] ≈ Wp Hp

[X+
a ] ≈ Wa Ha; [X−

a ] ≈ Wa Ha

(3)

The matrices W and W represent the weight matrices, and
the matrices H and H correspond to the basis vectors. Each
row in H is a basis vector. As mentioned earlier, NMF selects
recurrent patterns in the observations [9] as the rows of H .
In other words, NMF projects all signals with same spectral
content into single basis vector. Thus, we can represent a
variety of seismic signals using a compact set of basis vectors.

Once the basis matrices Hp and Hp are available, the DCT
coefficients Xt of a test signal x(t) can be represented as a
weighted sum of the basis vectors. The algorithm to estimate
the weights and bases (subset of H and H) is given below:

Algorithm 2: Algorithm to reconstruct target signatures
• Step 1: Normalize the test signal x(t) after removing the

mean. Compute Xt = dct (x(t)) and given by

Xt = X+
t −X−

t

• Step 2: Estimate the weights ω = {ω1, ω2, · · · , ωk} and
v = {v1, v2, · · · , vk} such that∣∣X+

t − ω H
∣∣2 + ∣∣X−

t − v H∣∣2 ; 0 ≤ ωi, vi ≤ ub;
∀i ∈ {1, 2, · · · , k}

(4)
is minimum, ub is typically 1. One may use any con-
strained nonlinear optimization program such as the
“fmincon” function in MATLAB [11] to perform this task.

• Step 3: Non-zero weights ω and v give the bases used to
represent Xt.

• Step 4: Reconstruct the signal x̂(t) by taking the inverse
DCT of the difference (ω H − v H).

Notice we are estimating both X+
t and X−

t in equation 4,
that is, we are estimating the positive and negative DCT
coefficients of a given signal hence the phase.

To determine whether the given Xt for an unknown signal
belongs to human or animal we use combined basis vectors

H =

[
Hp

Ha

]
H =

[ Hp

Ha

]

in the above algorithm 2. If the signal x(t) belongs to people,
the weights corresponding to the Hp and Hp will be higher
compared to the weights belonging to Ha and Ha.

Let Sp and Sa denote the total sum of the weights corre-
sponding to the basis vectors for people and animals, respec-
tively. If x(t) is the seismic signature of a person walking
alone, then Sp > Sa, since weights corresponding to animal
basis vectors will be mostly zero or close to zero. Similarly,
if x(t) contains a signature of only an animal walking, then
Sa > Sp. Else, if x(t) contains a mixture, then Sp ≈ Sa > 0,
since the weights are non-zero for both. However, we cannot
say which is greater as it depends on the basis vectors and how
well they represent the given signal. In Figure 8 we plot the
results of the algorithm for the data collected when a person
was walking. The values of Sp are plotted as ‘*’ and Sa as
‘o’. Figure 8 clearly shows that the values of Sp are higher
than Sa the majority of the time, indicating that the majority
of the signatures are of a person walking. Results for the data
collected with only a horse walking are shown in Figure 9.
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Figure 8. (a) Signature of a person walking (b) Classification
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Figure 9. (a) Signature of a horse walking (b) Classification

C. Ultrasonic Sensor Data Analysis

In this section, we present ultrasonic data processing to
identify the targets, estimate the direction of the targets
traveling and count the number of targets. The ultrasonic
transducer used has a transmitter that transmits a continuous
wave at fc = 40 kHz and a receiver to receive the Doppler
shifted signals bounced off from the targets and other objects
in the vicinity. The Doppler shift fd is mainly due to torso
and limb motion of the people and animals. For the sake of
capturing the data, the return signals are down converted to
4.5 kHz by heterodyning the received signals with 44.5 kHz.
Figures 10 and 11 show the spectrograms of one person and
two people walking, respectively. In the first case, the person
is walking away from the sensor. This can be seen in the
spectrogram when the person comes into the beamwidth of
the sensor, the signal strength is high initially and then as
the person moves away from the sensor the signal strength
decreases. In the second case, where two people are walking
towards the sensor, the solid line around 4.5 kHz on both the
spectrograms is due to leakage from the transmitter as well as
returns from the stationary objects. It is well known that the
Doppler frequency increases when the target is approaching
the sensor. However, from Figure 11 the spectrum shows a
decreasing frequency. In fact, the received frequency from the
target is fc + fd, when it is subtracted from the 44.5 kHz
during the heterodyning process, we get 4500 − fd, which
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is why increasing Doppler appears as decreasing frequency
in the spectrogram. From Figures 10 and 11, we notice
that the direction of travel can be inferred based on whether
the spectral returns of the target are above 4500 Hz or below it.

Target Count: In order to count the number of targets,
the energy in the spectrum is estimated and the data are
plotted in Figures 10(b) and 11(b). The energy plot in
Figure 11(b) shows two peaks indicating there are two
targets. One can estimate the number of targets by counting
the number of peaks with a minimum width ‘ω’ that is
determined a priori.

Damarla, et. al. [12] presented different classification al-
gorithms for animals and humans using ultrasonic signatures.
When the signal-to-noise ratio (SNR) was high (> 6 db), they
used the micro-Doppler characteristics exhibited by different
targets to classify them. When the SNR levels were below
6 db, they used cepstral coefficients to classify the targets
using a support vector machine (SVM) and multi-variate
Gaussian (MVG) classifier. Details of the algorithms and the
feature extraction can be found in [12]. Figure 12 shows the
classification of ultrasonic signatures when a person and a
horse are walked.
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D. Fusion of heterogeneous sensor data

In this section, we present the fusion algorithm used to fuse
the data from the PIR, seismic and ultrasonic detectors. The
same algorithm can be used to fuse the output of multiple
UGSs also. The classification of the multimodal sensor data
is done at each UGS system and the fusion is done at each
UGS. Fusion of the multiple UGSs information is presented in
section IV-A. It is assumed that each sensor receives an input

yi = si + ni,

where si is the signal and ni is the noise. Each sensor makes
a decision and generates a binary output

ui = d(yi) =

{
1, if H1 is true

−1, if H0 is true
(5)

where H1 and H0 are the hypotheses for a target being present
or absent, respectively, and “d()” is a decision function. The

PIR 
detector

Seismic 
detector

Ultrasonic 
detector

Fusion

up us uu

ui

yp ys yuInput

decision

decision

Figure 13. Fusion structure

fusion architecture used to fuse the sensor data at each UGS is
shown in Figure 13. Each sensor makes a decision and passes
its output to the fusion box, which makes the final decision
as to the presence of a target or not. Chair and Varshney [13]

presented an optimal decision rule for the likelihood ratio test
(LRT)

P (u1, · · · , un|H1)

P (u1, · · · , un|H0)

H1

≷
H0

P0 (C10 − C00)

P1 (C01 − C11)
(6)

where P0 and P1 are the priors for the two hypotheses and
Cij is the cost for selecting Hi when Hj is true for i, j ∈
{0, 1}. However, this approach requires the knowledge of the
a-priori probabilities P0 and P1 which are hard to determine.
An optimal fusion decision scheme using a Neyman-Pearson
(N-P) test [14] mitigates the requirement on priors. The LRT
can be rewritten as

Λ(u) =
P (u1, · · · , uN |H1)

P (u1, · · · , uN |H0)

H1

≷
H0

t, (7)

where “t” is the threshold determined by the desirable prob-
ability of false alarm. With the assumption that the decisions
from the sensors are independent, we get

Λ(u) =

N∏
i=1

P (ui|H1)

P (ui|H0)

H1

≷
H0

t (8)

The probability of false alarm P f
F and probability of detection

P f
D at the fusion center are given by∑

Λ(u)>t∗
P (Λ(u)|H0) = P f

F , (9)

∑
Λ(u)>t∗

P (Λ(u)|H1) = P f
D, (10)

where t∗ is the threshold chosen to satisfy equation 9 for a
desired P f

F . The goal is to achieve with the N-P test, a pair
(P f

F , P
f
D) such that

P f
F ≤ min

i∈N
{PFi} and P f

D > min
i∈N

{PDi} (11)

where (PDi , PFi) is the N-P test level for sensor i, i =
1, · · · , N . It is shown in [14] that, if PDi = PDj = PD and
PFi = PFj = PF for all i �= j, i, j ∈ {1, · · · , N}, then the
final probability of false alarm and detection are given by:

P f
F =

N∑
k=|t∗f |

(
N
k

)
P k
F (1− PF )

N−k (12)

P f
D =

N∑
k=|t∗

f
|

(
N
k

)
P k
D (1− PD)N−k (13)

where |t∗f | indicates the smallest integer (number of sensors)
required to exceed the threshold t∗ to achieve the desired
P f
F . If the sensors have different probabilities of detection

and false alarms, that is, PDi �= PDj and PFi �= PFj , one
can use the techniques described in [14] to estimate the final
probabilities and the algorithm is given below:

Algorithm 2: Estimation of final probabilities for



sensors with different receiver operating curves (ROCs):
Let the set S = {1, 2, · · · , N} represent all the sensors where
N is the number of sensors, and |t∗f | is determined based on
the final PF desired. Then, let us denote all the subsets of

S with k elements by Sk, where |Sk| =
(

N
k

)
, then the

final probability of false alarms and the final probability of
detection are given by

P f
F =

N∑
k=|t∗f |

⎛
⎝|Sk|∑

j=1

⎛
⎝|sj |;sj∈Sk∏

q=1

PFq

|s̄j |∏
r=1

(1− PFr )

⎞
⎠
⎞
⎠ (14)

P f
D =

N∑
k=|t∗

f
|

⎛
⎝|Sk|∑

j=1

⎛
⎝|sj |;sj∈Sk∏

q=1

PDq

|s̄j |∏
r=1

(1− PDr )

⎞
⎠
⎞
⎠ (15)

where s̄ is the complement of s.

IV. DATA COLLECTION AND ALGORITHM RESULTS

In order to verify the classification and fusion algorithms,
we went to the southwest border of the USA to collect data.
The data are collected on several terrains over a period of 5
days. On each day, several scenarios were enacted to collect
the data. Some of the scenarios are: (a) one person, two people
and three people walking, (b) one animal, two animals and
three animals walking, (c) one animal and one person walking,
and several people and several animals walking, etc. A total
of 36 scenarios were enacted each day. One of the trails used
for the data collection is shown in Figure 4. As mentioned
earlier, we collected the data using three UGS systems, each
system has (a) PIR sensor, (b) seismic sensor and (c) ultrasonic
sensor. The separation between two UGS systems is about 60
to 75 m.

In order to estimate the overall probability of detection at
each UGS system, we use the following algorithm:

Algorithm 3: Algorithm for computing probability
of detection at a UGS

• Compute the probability of detection PDi for each sensor
modality, namely, PIR, seismic and ultrasonic and their
probabilities of false alarm PFi .

• The PDi and PFi are computed as follows:

– Generate a training set for a sensor
– Train the PIR, seismic and ultrasonic detectors using

their respective training sets
– Use individual detectors to test the entire data col-

lected on all 5 days
– Estimate the probability of false alarm based on

the number of non-targets identified as targets and
the probability of detection based on the number of
targets correctly identified as targets.

• Perform the detection of new data using the detectors to
obtain ui, for all i.

• Estimate the probability of detection P
Uj

F and P
Uj

D for
all UGS Uj , using equations 14 and 15 respectively.

Table I shows the PDi and PFi for the three sensors, and the
overall probability of detection and false alarms for various∣∣∣t∗f

∣∣∣ values are given in Table II. From Table II, we notice
that an improved overall probability of false alarm is achieved
for

∣∣∣t∗f
∣∣∣ ≥ 2, which implies that two or more sensors should

have correct detection and classification.

PIR sensor Seismic Sensor Ultrasonic sensor
PF = 0.1 PF = 0.1 PF = 0.07
PD = 0.9 PD = 0.9 PD = 0.8

Table I
PROB. OF FALSE ALARM AND DETECTION FOR VARIOUS SENSORS

∣
∣
∣t∗f

∣
∣
∣ P f

F P f
D

1.0000 0.2467 0.9980
2.0000 0.0226 0.9540
3.0000 0.0007 0.6480

Table II
THRESHOLD VERSUS FINAL PROB. OF FALSE ALARM AND DETECTION AT

EACH UGS Uj .

Algorithm 4: Algorithm for computing probability of
correct classification at a UGS

• First detect the presence of a target (animal/person) using
each sensor modality

• If a target is detected, determine whether it is an animal
or a person. Determine the probability of person and
probability of animal at each modality

• Use equations 14 and 15 to determine the overall PF

and PD at each UGS system. Note that, probability of
false alarm here is the probability of animal classified as
a person.

• One may use ‘OR’ or ‘AND’ rules [14] to fuse the infor-
mation from different modalities instead of the equations
14 and 15.

A. Tracking of people

Figure 14 shows the flow chart used to track people using
distributed UGSs. Each UGS system determines the direction
of the targets, number of targets and the

(
P

Uj

D , P
Uj

F

)
. The

information is passed on to its neighbors along with the
information on number of targets and direction of travel.
Hence, only a few bytes of data is sent to the near by UGS as
opposed to sending the raw data from each sensor to a central
node for data fusion. For tracking, we use a sliding window
that covers the adjacent three UGSs to detect and report. This
approach makes sure that the tracking is robust and done with
high confidence levels (low P f

F ). As shown in Figure 14, if all
three UGSs determine that the target’s direction is same and
the number of targets are same, the information from all three
UGS will be fused using equations 12 and 13. An example of
the fused output of three UGS is given in Table III, which uses
the probability of false alarm P

Uj

F = 0.0226 and probability



UGS
Uj

UGS
Uj-1

UGS
Uj+1

All
directions 

same?

no. of
targets 
same?

If yes fuse 
the decisions

y y

direction tr. count

decision

transmit fused 
decision (PD, PF)

Figure 14. Flow chart used for tracking people using distributed UGS

of detection P
Uj

D = 0.9540 for all Uj (note that these values
correspond to the 2nd row in Table II).

∣
∣
∣t∗f

∣
∣
∣ P f

F P f
D

1.0000 0.1426 0.9990
2.0000 0.0073 0.9720
3.0000 0.0001 0.7290

Table III
THRESHOLD VERSUS FINAL PROB. OF FALSE ALARM AND DETECTION

AFTER FUSING INFORMATION FROM THREE UGS

V. CONCLUSION

In this paper, we considered the case of tracking a group
of people (targets) walking along trails. We presented the
algorithms to process individual sensor data for estimating the
number of targets and their classification. We also showed
that fusion of information of multimodal sensor at each UGS
improves the overall probability of false alarm. Similarly,
when we consider multiple UGSs to fuse their information,
we improve the probability of detection and reduce the false
alarm rate as well as our ability to track the group with high
confidence.

Future efforts would include fusion of soft data that is
obtained by scouts patrolling the border to predict the paths
of travel of people crossing the border. Effort will be made to
include the correlation between the observations of different
modalities as the sensors are observing the same phenomenon
and hence the assumption of independence is not quite valid.
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